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ABSTRACT: The present paper investigates the 

stability of Dufour–driven generalized 

hydromagnetic double-diffusive shear flows. The 

physical configuration is that of a horizontal layer 

of an incompressible inviscid heat conducting fluid 

of zero electrical resistivity in which there is a 

differential streaming U(z) in the horizontal 

direction and density variation )(0 zf   in the 

vertical direction while the entire system is 

confined between two horizontal boundaries of 

different but uniform temperature and 

concentration with the temperature and the 

concentration of the lower boundary greater than 

that of the upper one or vice-versa in the presence 

of a uniform horizontal  magnetic field, 0  being a 

positive constant having the dimension of density 

and U(z) and )(zf  being continuous functions of 

the vertical coordinate z with 0
dz

df
everywhere 

in the flow domain. Sufficient conditions are 

derived for overstability to be valid and bounds are 

presented for an arbitrary unstable mode of the 

system for the cases when the temperature and the 

concentration make opposing contributions to the 

vertical density gradient. 

KEYWORDS: Chandersekher number; Double-

diffusive convection; Dufour–effect; Non-

homogeneous shear flows                                                         

                    

I. INTRODUCTION 
The stability of parallel shear flow of an 

inviscid non-homogeneous fluid with stable density 

stratification to infinitesimal non-divergent 

disturbances has pervaded the scientific literature in 

the recent past on account of its importance in the 

fields of meteorology and oceanography etc. For a 

broad view of the subject one may refer to the 

fundamental works of Taylor [1], Goldstein [2], 

Drazin [3], Miles [4], Howard [5] and others on the 

stability of non-homogeneous shear flows. In the 

mathematical model of the problem considered by 

these authors, the fluid is taken to be initially non-

homogeneous without assigning any reason for the 

cause of this initial non-homogeneity.  However, 

the initial non-homogeneity may be due to variable 

temperature or concentration or some other cause.  

Diffusion effects which tend to produce these 

changes in the density of an individual fluid 

particle in the course of motion are ignored in these 

investigations.  Therefore, it became important to 

investigate the problem by retaining the initial non-

homogeneity and also taking into account the 

diffusion effects. Gupta et.al. [6] investigated the 

problem by taking into account the changes in 

density due to thermal effects and referred to the 

problem as the problem of generalized thermal 

shear flows. In order to make the model of Gupta 

et.al. [6] more realistic as regards its applications in 

the fields of oceanography etc. Gupta et.al. [7] 

further investigated the problem by taking into 

account the changes in density due to thermal and 

concentration effects and referred to the problem as 

the problem of generalized thermohaline (Double-

diffusive) shear flows. 

                  The stability properties of binary fluids 

are quite different from pure fluids because of Soret 

and Dufour effects [8, 9]. An externally imposed 

temperature gradient produces a chemical potential 

gradient and the phenomenon known as the Soret 

effect, arises when the mass flux contains a term 

that depends upon the temperature gradient. The 

analogous effect that arises from a concentration 

gradient dependent term in the heat flux is called 

the Dufour effect. Although it is clear that the 

thermosolutal and Soret-Dufour problems are quite 

closely related, their relationship has never been 

carefully elucidated. They are in fact, formally 

identical and this is done by means of a linear 

transformation that takes the equations and 

boundary conditions for the latter problem into 

those for the former.  Mohan [10] mollified the 

nastily behaving governing equations of Dufour-

driven thermosolutal convection of the Veronis 
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[11] type by the construction of an appropriate 

linear transformation and extended the result of 

Banerjee et.al.  [12] concerning the linear growth 

rate and the behavior of oscillatory motion. Mohan 

et al. [13] investigated the problem of generalized 

hydromagnetic thermohaline shear flows and 

derived sufficient conditions for overstability to be 

valid.  

In the present paper we investigate the 

problem of Dufour-driven generalized 

hydromgnetic double-diffusive shear flows. 

Sufficient conditions are derived for overstability 

to be valid and bounds are presented for an 

arbitrary unstable mode of the system for the cases 

when the temperature and the concentration make 

opposing contributions to the vertical density 

gradient.  The problem is completely solved at the 

marginal state when the basic velocity profile is 

linear and the diffusion of the dissolved solute is 

almost comparable than the diffusion of heat.  A 

first approximation to the solution shows that as the 

initial density distribution increases, the Rayleigh 

number must also increase, a result which one 

would expect on physical grounds also. 

 

II. MATHEMATICAL FORMULATION 

AND ANALYSIS 
The relevant governing equations and 

boundary conditions of Dufour-driven double-

diffusive shear flows wherein a uniform horizontal 

magnetic field is superimposed are given by [6]  
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N


  is the Brunt-Vaisala 

frequency. In the above equations R1 is thermal 

Rayleigh number, Rs is concentration Rayleigh 

number, TK  is the thermal diffusivity, SK  is the 

mass diffusivity, 
01

1

v

D

c
  is the Dufour 

coefficient, and the various other symbols have 

their usual meanings.  

The solution of the Eqs. (1) - (3) must be sought 

subject to the following boundary conditions: 

 

0 0 1W at z and z     

                                                                           

                                                                        (4) 

Equations (1) – (3) together with the 

boundary conditions (4) present an eigenvalue 

problem for ( )r iC C iC  , for given values of 

the other parameters and a given state of the system 

is stable, neutral or unstable provided iC  is 

negative, zero or positive respectively. Further, if 

0Ci   implies that 0Cr   for every wave 

number a, then the principle of exchange of 

stabilities (PES) is valid, otherwise we have 

overstability at least when instability sets in a 

certain modes.  It is to be noted that the inclusion 

of the convective effects of heat and mass transfer 

make the definitions of stable, neutral and unstable 

modes distinctly clear in the sense that the 

existence of a stable mode no longer implies the 

existence of an unstable mode etc., as is there in the 

classical instability problem of heterogeneous shear 

flows 

We now prove the following theorems:  

 

Theorem 1:  If (C, w, , ), C = Cr + i Ci is a 

solution of Eqs.      (1) – (4) with 

1 0, 0, 0,0 1SR R       , Q > 0 and 

2

minUQ  and 
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then Ci = 0 ⇒ Cr ǂ 0 for some wave number a. 

Proof.  Using the transformations  
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(5) the system of Eqs. (1) - (3) together with the 

boundary condition (4) assume the following 

forms: 
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with 

0 0 1W at z and z     

                                                   

                                                                         (9) 
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The sign tilde (~) has been omitted for simplicity. 

 If possible, let Ci = 0 ⇒ Cr = 0, V  a so that C = 0 

is allowed by the governing equations and 

boundary conditions. 

Then from equations (6) – (8), we have 
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In view of condition (i) of the theorem 

 1,0zv,0U    , 

So that Eq. (10) can also be written as 
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Multiplying Eqs. (13), (11) and (12) by 
*

* 1,
iR a

W
M


 and 

*

Si R a   (*indicates complex 

conjugation), respectively, integrating over the 

vertical range of z by parts appropriately, using the 

boundary conditions (9), we get 
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where Re stands for the real part. 

Integrating the second term on the left hand side of 

Eq. (14) by parts once and using boundary 

conditions (9), we get 
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 Equating the real parts of Eq. (14) and making use 

of Eq. (15), we have 
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Multiplying Eq. (12) by its complex conjugate and 

integrating over the vertical range of z, we get  
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Condition (i) of the theorem implies that either  

(a) U > 0, D
2
U > 0    or  

(b)    U < 0, D
2
U < 0, V  z  [0, 1].  

If (a) holds, then equation (17) gives 
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Using inequality (18) in Eq. (16), we get 
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If (b) holds, it is easily seen that inequality (19) 

assumes the form  
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Inequalities (19) and (20) obviously cannot hold 

under conditions (i) and (ii) of the theorem. 

Hence, in the condition of the theorem Ci = 0 ⇒ Cr ǂ 

0 for some wave number a.  

This completes the proof of the theorem. 

The essential contents of Theorem 1, from 

the point of view of hydrodynamic instability, is 

that an arbitrary neutral mode in the problem of 

generalized hydromagnetic Dufour-driven double-

diffusive shear flows of Veronis [11] (R1 > 0, RS > 

0) type is definitely not non-oscillatory (Cr = 0) in 

character, i.e. PES is not valid if   UD
2
U > 0, 

everywhere in [0,1] and  
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SPECIAL CASES:  It follows from Theorem 1 

that PES is not valid for 

  (i) Dufour-driven generalized double-diffusive 

shear flows  (Q = 0) if  
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(ii)     Dufour-driven double-diffusive shear flows 
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Further, taking γ =0 in Eq. (2) and proceeding 

exactly as in Theorem1, the following results can 

easily be derived.  

 (iii)    Generalized hydromagnetic double-

diffusive shear  
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          flows  if       
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 (iv)    Hydromagnetic double-diffusive shear flows 

of  Veronis type (R3 = 0,  R1 > 0, RS > 0) if 
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(v)      Double-diffusive shear flows of Veronis type  
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Theorem 2:  If (C, w, , ), C = Cr + iCi is a 

solution of Eqs.             (6) – (9) with R1 > 0, RS > 

0, Q > 0 and 
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       then Ci = 0 ⇒ Cr ǂ 0 for some wave number a.  

Proof:  If possible, let Ci = 0 ⇒ Cr = 0 V  a, so 

that C = 0 is allowed by the governing equations 

and boundary conditions. 

Proceeding exactly as in Theorem1 upon 

considering the case (i) (a), we have  
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Equation (21) together with inequality (18), yields  
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Now since U > 0, U
2
 – Q > 0,  1,0zV  , we 

have 
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which upon using the Rayleigh-Ritz inequality 

[Schultz [14]], namely, 
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where f1 (0) = 0 = f1 (1) with f1 = w gives 
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Using inequality (24) in inequality (22), we get 
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(25) 

Similarly if i(b) i.e. U < 0 and D
2
U ≥ 0, 

 1,0zV  , then it is easily seen that inequality 

(25) assumes the form 
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(26) 

Inequalities (25) – (26) obviously cannot hold 

under the conditions of the theorem. 

Hence, under the conditions of the theorem Ci = 0 ⇒ 

Cr ǂ 0 for some wave number a. 

This completes the proof of the theorem. 

The essential content of Theorem 2, from the point 

of view of hydrodynamic instability, is that an 

arbitrary neutral mode in the problem of Dufour-

driven generalized hydromagnetic double-diffusive 

shear flows of Veronis' [11] (R1 > 0, RS > 0) is 

definitely not non-oscillatory (Cr = 0) in character, 

i.e. PES is not valid if    U > 0 and D
2
U ≤ 0, 

everywhere in [0, 1] and U < 0 and D
2
U   0, 

everywhere in  [0, 1] and 
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SPECIAL CASES:  It follows from Theorem 2 

that the PES is not valid for 

i) Dufour-driven generalized double-

diffusive shear flows (Q=0) if U > 0, D
2
U   0, or 

U < O, D
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U ≥ 0,  1,0zV   and  

2

2 2 1 0
3

min

2 1
S

U D U R R
R U R






 
 

    
  

 

(ii)       Dufour-driven double-diffusive shear flows 

( R3 = Q= 0 )              if  

           D
2
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Further, taking γ = 0 in Eq. (2) and proceeding 

exactly as in Theorem 2, following results can 

easily be derived. 

  (iii) Generalized hydromagnetic double-diffusive 

shear flows if  
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(iv)   Double-diffusive shear flows of Veronis type 

(R3 = 0 =              Q, R1 > 0, RS > 0)   if 
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2
U ≤ 0, or U < 0, D

2
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Theorem 3:  If (C, w,  ,  ), C = Cr + iCi) is a 

solution of equations (6)-(9) with R1 < 0, RS < 0, Q 

> 0 and Q < 
2

minU   and 

(i)  1,0zV,0UDU 2     , 
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(ii) 

,
22

1

min

3

22

0

21












 R
U

UDQUDU

RM
R





 

then  Ci = 0 ⇒ Cr   0 for some wave number a.  

Proof:  Putting R1 = –│R1│ and RS = –│RS│, in 

Eq. (16), and using the inequality 

 

1

0

2

2

21

0

2 1
dzw

Ua

M
dzU  .                             

(27) 

which is derived from Eq. (7) in a manner similar 

to the derivation of inequality (18), and proceeding 

exactly as in Theorem 1, we get the required result. 

This completes the proof of the Theorem. 

Theorem 4:  If (C, w,  ,  ), C = Cr + iCi is a 

solution of equations (6)-(9)  with R1 < 0, RS < 0, Q 

> 0 and Q < 
2

minU  and 

(i) a)  U > 0, D
2
U ≤ 0,  1,0zV    or 

                b)  U < 0, D
2
U ≥ 0,  1,0zV   

(ii)
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then Ci = 0 ⇒ Cr   0 for some wave number a. 

Proof:  Putting R1 = -│R1│ and RS = - │RS│, in 

Eq. (16), using inequalities (24) and (27) and 

proceeding exactly as in Theorem 2, we get the 

required result. 

This compeltes the proof of the theorem. 

The essential contents of Theorem 3 and Theorem 

4, from the point of view of hydrodynamic 

instability are similar to that of Theorem1 and 

Theorem2 respectively. However, presently the 

problem is that of Dufour-driven generalized 

hydromagnetic double-diffusive shear flows of 

Stern’s type [15] (R1 < 0, RS < 0).Further special 

cases of Theorem3 and 4 analogous to that of the 

earlier Theorems could be easily written down in 

the present case also.  

Theorem 5:  If (C, w,  ,  ), C = Cr + iCi, Ci > 0 

is a solution of equation (6) – (9) with R1 > 0, RS > 

0 and Q > 0, then Ci < α, where α is the positive 

root of the cubic 

01

232  QqMCRqCC iii   , 

 where q = (│DU│)max. 

Proof:  Since U – C   0,  1,0zV  , therefore 

dividing Eq. (6) throughout by (U – C) and  then 

proceeding as in Theorem 1, we get 
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 where Re stands for real part.  

Equating the imaginary parts of Eq. (28) and 

dividing the resulting equation throughout by Ci (> 

0), we get 
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                                                                   (29) 

where Im stands for the imaginary part.  

Using Eqs. (7) – (8), it follows that  
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                                                                              (3
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                                                                      (31) 

Using Eqs. (30)–(31) in Eq. (29) and simplifying 

the resulting equation, we get  
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Multiplying Eq. (7) by  *, integrating over the 

vertical range of z by parts once, using boundary 

conditions (9) and equating the real parts of the 

resulting equation, we get 

 













 

1

0

*

1

0

2222
Re

1
dzwdzaCaD

M
i    

                                       

1

0

dzw  

                                          
2/1

1

0

2

2/1
1

0

2
dzdzw

















                  (33) 

 

It follows from inequality (33) that 
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Using inequality (34) in inequality (33), we get 
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which upon using inequality (23) with f1 = w, gives 
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DUq   . 

Equation (32) upon using inequalities (35) – (37), 

gives 
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) 

Since a > 0, Ci > 0,   > 0, RS > 0 and R3 > 0, 

therefore inequality (38) clearly implies that 

01
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Hence, if α1, α2, α3 are roots of this cubic, then 

α1α2α3 = π Qq > 0 ⇒ cubic has one and only one 

positive root α1= α (say). Thus above cubic yields 

Ci < α. 

This completes the proof of the theorem. 

The essential content of Theorem 5 from the point 

of view of hydrodynamic instability is that the 

growth rate of an arbitrary unstable (Ci > 0) mode 

in the problem of Dufour-driven generalized 

hydromagnetic  double-diffusive shear flows of 

Veronis' type (R1 > 0, RS > 0) is necessarily 

bounded with upper bound α. 

Further, this result is uniformly valid for the 

problems of Dufour-driven hydromagnetic double-

diffusive shear flows, generalized hydromagnetic 

double-diffusive shear flow, Dufour-driven 

generalized double-diffusive shear flows etc. of 

Veronis' type. 

Theorem 6:  If (C, w,  ,  ), C = Cr + iCi, Ci > 0 

is a solution of equations (6) – (9) with R1 < 0, RS < 

0, Q > 0, then Ci < α, α being positive root of cubic      

       0232  QqCRqCC iSii   , 

        where q = (│DU│)max   .  

Proof: Putting R1 = │R1│ and RS = – │RS│ in Eq. 

(32), using the inequalities (35) and  

   


1

0

2

2

i

1

0

2

i

1

0

222
dzDw

aC

1
aCdzaD                            

                                                                (39

) 

which is derived from Eq. (8) in a manner similar 

to the derivation of inequality (34), we get the 

required result. 

This completes the proof of the theorem.  

The essential content of Theorem 6, from the point 

of view of hydrodynamic instability, is similar to 

that of Theorem5.However, the problem presently 

is that of Dufour –driven generalized 

hydromagnetic double-diffusive shear flows of 

Stern's type (R1 < 0, RS < 0).  
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